
Abstract. The Monte Carlo Fourier path integral
approach has proved to be quite useful in calculating
equilibrium thermodynamic properties. One of its ad-
vantages is that it can be formulated in such a way as to
include higher order terms using the partial averaging
technique, which includes the contribution from higher
terms usually neglected by the discretized path integral
approach. In the original approach, the Feynman path
integral is evaluated via a free-particle reference state.
Here, using a new expression for the Feynman paths
expanded around a harmonic reference path, we derive
an alternative formulation for the density matrix element
and its corresponding partial averaging expression.
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1 Introduction

Feynman path integral methods are quite useful in
calculating equilibrium thermodynamic properties such
as density matrix elements, partition functions and
other equilibrium thermodynamical properties [1±10].
Generally, there are two kinds of approach to calcu-
lating path integrals. One approximation, referred to
as the discretized path integral (DPI) approach, is to
discretize the quantum paths such that the quantum
particle becomes isomorphic to a chain of p classical
beads connected with each other through a tempera-
ture-dependent harmonic force [2, 3, 5, 11]. Another
approach, called the Fourier path integral (FPI)
approach, is to expand the quantum path into a
Fourier series [1, 12] and to use only the ®rst p low-
order terms in numerical calculations. These approxi-
mations usually give accurate and converged results for
cases at relatively high temperature, where small p will
usually su�ce. However, at low temperature these
approximations start to su�er from slow convergence,
because larger p is required. In the framework of both

approaches, many methods [13±22] were introduced,
using improved propagators, better reference systems
or better sampling techniques, to accelerate the con-
vergence at low temperature; however these approaches
still drop o� the terms or beads presumed to have a
negligible contribution.

The Monte Carlo FPI approach was introduced by
Doll and Freeman [12]. Though the truncated version
of the FPI approach, where the higher order terms are
left out, is essentially comparable to the DPI method
[10, 15] in terms of convergence, the former is advan-
tageous over the latter in that the FPI method, by
means of partial averaging (PA) [1, 6, 7, 9, 10, 23, 24],
can include the average e�ects of the higher order terms
that are left out in other approaches, i.e., the truncated
FPI or the DPI methods. In the original FPI approach,
the quantum path is expanded around a free-particle
path (FP) by a Fourier expansion; hence, it is expected
that a reference system other than the free-particle
system should further improve the PA FPI calculations.
PA FPI approaches [6, 7, 9, 24] were indeed proposed
based on variational or local harmonic reference states;
however all these approaches are based on the centroid
formulation [1], so they cannot be used to calculate
thermal propagators or density matrix elements. In the
present work, starting from the original FPI thermal
propagator, we have derived an alternative harmonic-
referenced PA FPI formulation for the thermal prop-
agator and its corresponding PA version, and we
demonstrate its applicability to a model system at low
temperature.

2 Methods

In the original FPI formulation [12], the path is expanded in a
Fourier series around the free±particle reference path, i.e.,

x s� � � xfp s� � �
X1
n�1

an sin Xns� � ; �1�

where xfp is a FP given by xi � xf ÿ xi
ÿ �

s=�hb, with xi and xf denoting
the initial and ®nal positions, b is 1=kBT , kB is the Boltzmann
constant and T is temperature, and Xn � np=�hb. With this repre-e-mail: lshjk@life.nthu.edu.tw
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sentation of the Feynman paths, the thermal propagator or density
matrix element can be written as

q�xf; xi� � qfp xf; xi
ÿ �� exp ÿ 1

�h

Zb�h

0

dsV x�s�� �
0@ 1A* +

a1 ...a1

; �2�

where qfp xf; xi
ÿ �

is the free-particle density matrix element given by,

qfp xf; xi
ÿ � � 1������������������

2p�h2b=m
q exp ÿ m

2�h2b
xf ÿ xi
ÿ �2� �

�3�

and the notation � � �h ia1;...;a1 in Eq. (2) indicates a Gaussian average
over the Fourier coe�cients �ai�,

� � �h ia1 ;...;a1�
Z

da1 . . . da1Q1
n�1

���������
2ps2n

p exp ÿ
X1
n�1

a2
n

2s2n

 !
exp ÿ 1

�h

Zb�h

0

dsV x�s�� �
0@ 1A

�4�
with the Gaussian widths sn given by s2n � 2=mbX2

n. For conve-
nience, we shall refer to this approach as the FP method. In the
truncated version of the FP approach, only the ®rst p terms are
used, while the higher order coe�cients are neglected. The trun-
cated FPI is then calculated by the Monte Carlo method.

In the PA FP approach, the higher order terms, instead of
being just thrown out, are included in an average way by means
of a PA technique [10, 23]. The PA FP thermal propagator is
given by

q�xf; xi� � qfp�xf; xi� exp ÿ 1

�h

Zb�h

0

ds ~V �xfp s� �� �0@ 1A* +
a1;...;ap

; �5�

where the e�ective potential ~V �xfp s� �� �
is

~V �xfp s� �� � � Z dyV q� �xfp
ÿ � exp ÿy2=2a2fp

� �
�����������
2pa2fp

q �6�

and the truncated path �xfp s� � and the Gaussian width afp are given
by

�xfp s� � � xfp s� � �
Xp

n�1
bn sin Xns� � �7�

a2fp �
1

mb
s �hbÿ s� � ÿ

Xp

n�1
s2n sin

2 Xns : �8�

The PA FP approach has been shown to be very powerful, with
only a moderate number of Fourier terms, in calculating thermo-
dynamical properties at low temperature [10, 23].

We start from Eq. (2), inserting a reference potential V0 x� �, and
obtain

q�xf; xi� � qfp xf; xi
ÿ �

exp ÿ 1

�h

Zb�h

0

dsV0�x�s��
0@ 1A*

� exp

 
ÿ 1

�h

Zb�h

0

ds V �x�s�� ÿ V0�x�s��� �
!+

a1...a1

: �9�

In the case of V0�x� � 1
2mx2x2, the integral of V0 x s� �� � over s can be

evaluated analytically, i.e.,Zb�h

0

dsV0�x�s�� � �hbmx2 1

6
x2i � xixf � x2f
� ��

�
X1
n�1

a2n
4
�
X1
n�1

xi ÿ �ÿ1�nxf
� �

pn
an

#
:

�10�

Substituting Eq. (10) into Eq. (9), and using the identityY1
1

�����������������
X2

n

X2
n � x2

s
�

������������������
�hxb

sinh �hxb

s
; �11�

we obtain a very simple expression for the thermal propagator,

q�xf; xi� � qhmo�xf; xi� exp ÿ 1

�h

Zb�h

0

dsdV x s� �� �
0@ 1A* +

b1...b1

; �12�

which is similar in appearance to Eq. (2). Here qhmo is the harmonic
density matrix element:

qhmo�xf; xi� �
1������������������

2p�h2b=m
q ������������������

�hxb
sinh �hxb

s

� exp

"
mx
�h

 
xixf

sinh �hxb
ÿ

x2i � x2f
� �

2
coth �hxb

!#
�13�

and dV �x� � V �x� ÿ 1
2 mx2x2. The Gaussian average � � �h ib1...b1 ,

with widths r2
n � 2=mb X2

n � x2
ÿ �

, is now averaged over a new set
of variables bn, which is related to an through the following rela-
tionship

bn � an � 2x2

p

xi ÿ ÿ1� �nxf
� �

n X2
n � x2

ÿ � : �14�

In terms of bn, the quantum path is of the following form,

x�s� �
"

xi � �xf ÿ xi�s=�hbÿ
X1
n�1

2x2

p

xi ÿ �ÿ1�nxf
ÿ �

n x2 � X2
n

ÿ � sin�Xns�
#

�
X1
n�1

bn sin�Xns� : �15�

The seemingly complicated terms inside the brackets of Eq. (15) can
reduce to a simple, suggestive form,

�� � �� � 1

sinh �hxb
xf sinhxsÿ xi sinh�xsÿ �hxb�� �

: �16�

Immediately, we see that Eq. (16) is actually the trajectory of a
harmonic oscillator that propagates in imaginary time and satis®es
the boundary conditions: x�0� � xi and x��hb� � xf. It is clear that
Eq. (15) gives the expression for the quantum path expanded
around a harmonic path, i.e., Eq. (16), in terms of bn. For conve-
nience, we will designate the harmonic path as xhmo�s�, and refer to
our approach (Eqs. 12, 15 and 16) as the harmonic path (HP)
approach.

Typical Feynman paths expanded in FP and HP series, i.e.,
Eqs. (1) and (15), are plotted in Fig. 1. The paths with p � 0 and
p � 250 are drawn as the solid line and the dotted line, respectively.
All paths plotted are closed, i.e., the initial point is identical to the
®nal point of the path. It is interesting to note that the paths based
on the harmonic reference state (Fig.1a) will approach x � 0 at
s � �hb=2 with ¯uctuations introduced by the higher order terms
(p 6� 0). The paths based on the free-particle reference state (Fig.
2a) ¯uctuate around the straight line traced by the free particle. In
the limit of large p, these representations of the Feynman paths
become identical, as expected. In the limit of x approaching zero,
the HP Gaussian width rn reduces to the FP Gaussian width sn.
Equations (12), (15) and (16) o�er an alternative formulation for
the FPI calculation of the thermal propagator. In the case of di-
agonal density matrix elements, the frequency x can be conve-
niently taken to be the second derivative of the potential,
d2V �x�=dx2; however, in the case of the o�-diagonal matrix ele-
ments, the choice of the frequency is not unique. One of the options
is to use the second derivative of the potential function at either xi
or xf, or even the midpoint �xi � xf�=2. In the case of negative
second derivatives such as double-well potentials, the terms in-
volving the denominator X2

n � x2 could become zero or negative.
This presents no problem, since we can always choose a value of x
such that X2

n � x2 is greater than zero and Eq. (12) can be evaluated
by the usual Monte Carlo method.
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3 The PA implementation

The implementation of PA to the HP formulation is
rather straightforward [10, 23], and the ®nal PA expres-
sion for the FP thermal propagator is,

q�xf; xi� �
Yp

n�1

�����������������
X2

n � x2

X2
n

s

� exp ÿ
Xp

1

bmx4 xi � ÿ1� �n�1xf
h i2

n2p2 x2 � X2
n

ÿ �
0B@

1CA
� qhmo xf; xi

ÿ �
� exp ÿ 1

�h

Zb�h

0

dsd ~V �xhmo�s�� �
0@ 1A* +

b1;...;bp

:

�17�

Here �xhmo�s� is the truncated path with terms up to order
p:

�xhmo�s� � xhmo�s� �
Xp

n�1
bn sin�Xns� �18�

and the e�ective potential d ~V �x s� �� � is given by

d ~V �xhmo�s�� � �
Z

dydV y � �xhmo� � exp ÿy2=2a2hmo

ÿ ����������������
2pa2hmo

q : �19�

The Gaussian width ahmo is given by,

a2hmo �
�h

2mx
cosh �hxbÿ cosh �hxbÿ 2xs� �

sinh �hxb

ÿ
Xp

n�1
r2

n sin
2 Xns : �20�

In the limit x! 0, it is not hard to see that Eqs. (17)±
(20) reduce to Eqs. (5)±(8). The Gaussian widths ahmo

Fig. 1. Comparison of a the harmonic reference paths (HP) and b
the free-particle reference paths (FP). All paths plotted are closed,
i.e., the initial point is identical to the ®nal point of the path. The
solid lines are the paths with p � 0, and the dotted lines are the paths
with p � 250

Fig. 2. Comparison of the Gaussian widths a ahmo and b afp as a
function of s (in units of �hb)
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and afp as a function of s are compared in Fig. 2. They
show quite distinct shapes at p � 0, but when p increases
they become similar.

The multidimensional implementation of the HP
method is rather straightforward [9]. The N -dimensional
version of the smeared potential ~V �xp s� �� is given by

~V �xp�s�� �
Z YN

i

dxi����������
2pa2i

p
� exp ÿ

XN

j�1

n2j
2a2j

 !
V x� xp�s�
� �

; �21�

where the mass-weighted coordinates xi are used here. In
practical calculations, Eq. (21) can be expanded in a
Taylor series,

~V �x� � V �x� � 1

2

XN

i

a2i
2

� �
Vxixi � � � � ; �21�

where Vxixi � @2V =@xi@xi. The quantities nj and a2j in
Eq. (21) are given by

nj �
XN

k�1
xjCjk

a2j �
�h
2xj

cosh �hxjbÿ cosh �hxjbÿ 2xjs
ÿ �

sinh �hxjb

ÿ
Xp

n�1
r2
jn sin

2 Xns : �22�

Here the Gaussian width r2
jn is given by

r2
jn � 2=b X2

n � x2
j

� �
. The quantities xj and Cjk are the

jth eigenvalue and its corresponding kth eigenvector,
respectively, of the N � N matrix F de®ned by

Fij � 1

�hb
����������
mimj
p

Z�hb

0

ds ~Vxixj xp s� �� �
; �23�

where Vxixj � @2V =@xi@xj.

4 Results and discussion

Consider a well-known model system: a harmonic
oscillator coupled with a quartic term through g,

V x� � � 1

2
x2 � g

4
x4 : �24�

The e�ective potential can be solved analytically,

~V x� � � 1

2
x2 � a2
ÿ �� g

4
x4 � 6x2a2 � 3a4
ÿ �

;

where a is the Gaussian width. For convenience, we will
set both m and �h to 1. In most cases, it is di�cult to
obtain analytical solutions for the e�ective potential,
and the following expansion should be useful,

~V �xp

� �
�
X1
n�0

1

n!

a2

2

� �n

V 2n� � �xp

� �
�25�

where the superscript �2n� denotes the 2nth derivative.
The diagonal density matrix elements, calculated by the
FP and HP approaches are plotted in Fig. 3. As shown
in the ®gure, the HP methods give better results than the
FP methods, and the density matrix elements calculated
by the PA FP method with p � 4 are almost indistin-
guishable from the exact values. The convergence of the
quantum free energy calculated by the FP and HP
approaches is compared in Fig. 4. As expected, the HP
methods perform better. It is interesting to note that at
small p, the truncated HP method gives better results
than the PA FP method, but the latter quickly outper-
forms the former as p increases. In general, both HP
methods, either discreted or partial averaged, give better
results than the corresponding FP approaches.

In summary, using a new expression for the Feynman
paths expanded around a harmonic reference path, we
have derived an alternative FPI expression for the den-

Fig. 3a, b. Comparison of the convergence of the diagonal density
matrix elements q�x� calculated by various Monte Carlo Fourier
path integral (MC FPI) methods. The number of Fourier terms p is
2 in a and 4 in b. The parameters for the system (Eq. 18) are: g � 10
and b � 4. partial averaging (PA), truncated (Trnc)
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sity matrix element, in both the truncated and PA forms.
This new formulation performs satisfactorily in the
calculation of the thermal propagator and the quantum
free energy.

Acknowledgements. This work is supported by the National
Science Council, Taiwan

References

1. Feynman RP, Hibbs AR (1965) Quantum mechanics and path
integrals. McGraw-Hill, New York

2. Stratt RM, Miller WH (1977) J Chem Phys 67:5894
3. Schweizer KS, Stratt RM, Chandler D, Wolynes PG (1981)

J Chem Phys 75:1347
4. Chandler D, Wolynes PG (1981) J Chem Phys 74:4078
5. Thirumalai D, Hall RW, Berne BJ (1984) J Chem Phys 81:2523
6. Feynman RP, Kleinert H (1986) Phys Rev A 34:5080
7. Giachetti R, Tognetti V (1986) Phys Rev B 33:7647
8. Hwang J-K, Warshel A (1996) J Am Chem Soc 118:11745
9. Lobaugh J, Voth GA (1992) J Chem Phys 97:4205
10. Coalson RD, Freeman DL, Doll J (1986) J Chem Phys 85:4567
11. Hwang J-K, Warshel A (1993) J Phys Chem 97:10053
12. Doll JD, Freeman DL (1984) J Chem Phys 80:2239
13. Takahashi M, Imada M (1984) J Phys Soc Jpn 53:3765
14. Friesner RA, Levy RM (1984) J Chem Phys 80:4488
15. Kono H, Takasaka A, Lin SH (1988) J Chem Phys 1988:6390
16. Zhang P, Levy RM, Friesner RA (1988) Chem Phys Lett

144:236
17. Makri N, Miller WH (1988) Chem Phys Lett 151:1
18. Makri N, Miller WH (1989) J Chem Phys 90:904
19. Mak CH, Andersen HC (1990) J Chem Phys 92:2953
20. Cao J, Berne BJ (1990) J Chem Phys 92:7531
21. Topper RQ, Truhlar DG (1992) J Chem Phys 97:3647
22. Topper RQ, Zhang Q, Liu YP, Truhlar DG (1993) J Chem Phys

98:4991
23. Doll JD, Coalson RD, Freeman DL (1985) Phys Rev Lett 55:1
24. Hwang J-K (1997) Theor Chem Acc 98:202

Fig. 4. The quantum free energy as a function of p, calculated by
various MC FPI methods. The parameters of the system are the
same as those in Fig. 3

363


